73 research outputs found

    Chemische Notizen

    Get PDF
    n/

    Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite

    Get PDF
    The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum

    Die Erkennung des Kunsthonigs

    No full text

    Die chemische Zusammensetzung einiger BlĂĽtenstaubarten.

    No full text

    The primary and secondary structure of yeast 26S rRNA.

    No full text
    We present the sequence of the 26S rRNA of the yeast Saccharomyces carlsbergensis as inferred from the gene sequence. The molecule is 3393 nucleotides long and consists of 48% G+C; 30 of the 43 methyl groups can be located in the sequence. Starting from the recently proposed structure of E. coli 23S rRNA (see ref. 25) we constructed a secondary structure model for yeast 26S rRNA. This structure is composed of 7 domains closed by long-range base pairings as n the bacterial counterpart. Most domains show considerable conservation of the overall structure; unpaired regions show extended sequence homology and the base-paired regions contain many compensating base pair changes. The extra length of the yeast molecule is due to a number of insertions in most of the domains, particularly in domain II. Domain VI, which is extremely conserved, is probably part of the ribosomal A site. alpha-Sarcin, which apparently inhibits the EF-1 dependent binding of aminoacyl-tRNA, causes a cleavage between position 3025 and 3026 in a conserved loop structure, just outside domain VI. Nearly all of the located methyl groups, like in E. coli, are present in domain II, V and VI and clustered to a certain extent mainly in regions with a strongly conserved primary structure. The only three methyl groups of 26S rRNA which are introduced relatively late during the processing are found in single stranded loops in domain VI very close to positions which have been shown in E. coli 23S rRNA to be at the interface of the ribosome
    • …
    corecore